Solution of Conway-Radin-Sadun Problem, Second Example

by Izidor Hafner

Faculty of Electrical Engineering, University of Ljubljana
Trzaska 25, 1000 Ljubljana, Slovenia
e-mail: izidor.hafner@fe.uni-lj.si

It was proved [1] that it was possible to dissect icosahedron, dodecahedron, and icosidodecahedron into finitely many pieces that can be reassembled to form a large cube. The authors admited that they had no idea how to perform such dissections. A solution was found in [2]. But there is another solution, and has been on internet for some years [3].

Namely, hexecontahedron, triacontahedron and 120-hedron can be dissected to dodecahedron, icosahedron and icosidodecahedron. 120-hedron is rhombic solid we get from double triacontahedron by removing 20 oblate rhombohedra from its surface.

References

[1] J. H. Conway, C. Radin, and L. Sadun, On angles whose squared trigonometric functions are
rational, Discrete \& Computational Geometry, 22 (1999), pages 321-332.
[2] I. Hafner, Solution of Conway-Radin-Sadun Problem.
[3] I. Hafner, T. Zitko, Relations among rhombic, Platonic and Archimedean solids - published in Visual Mathematics Vol.4, No.2, 2002, 2, (4)

